SQLServer的列存更新方案
最近读了一下 Microsoft 在 2015 年 VLDB 上发表的论文 《Real-Time Analytical Processing with SQL Server》[1]。SQLServer算是业内较早实现并落地 HTAP 行列更新方案的产品,我其实觉得 行存(Row-Wise Index) 在OLTP场景下的各种设计以及取舍,大家都已经讨论的非常清楚了。对于高效率的 毫秒级列存更新 方案,业界有一些方案设计和实现,典型的如Kudu[2]、Positional Delta Tree[3] 等,但远不如行存讨论的多。我仔细的 Review 了一下 SQLServer 的技术方案,觉得他们的设计还是颇具参考意义。本文分享一下我对这篇文章的一些看法。 论文主要讲了 4 个方面的话题: 内存中实现列存表; 对于行存表,怎么实现一个列存索引结构,从而实现分析型 SQL 的极大提速。这部分的重点就是怎么实现列存二级索引的实时更新; 对于列存表怎么实现一个 B-Tree 的二级索引,使得这个列存表可以用来做点查和小范围扫描; 计算层在列存表的扫描性能上做了哪些优化。 第1部分纯内存的列存表相对比较简单,第4部分的列存表扫描在业界的很多论文中都可以找到类似的方案。第2部分和第3部分相对比较独特,可以说是整篇文章的精华,也是我比较感兴趣的部分。 其实第2部分,可以认为是在一个已经存在的OLTP表上,怎么来创建一个OLAP的列存索引,使得这个表可以跑 “TP为主,AP为辅” 的两种QUERY;而第3部分正好完全相反,相当于是在一个纯粹的OLAP列存表之上,创建一个适合做 点查 和 小范围 查询的行存索引,使得这个表可以完成 “AP为主,TP为辅” 的混合QUERY。 “TP为主,AP为辅“ 的索引方案 SQL Server的这种 CSI (Columnar Store Index)更新方案,说实话其实在 写入延迟 和 读取延迟 上处理的还算比较恰当。对于列存索引来说,如果是 INSERT 的话,那么直接 Append 到 Delta Store 里面就行,没啥其他的额外耗时操作;如果是 DELETE 的话,先看一下 DELETE 的 key 是否在 Delta Store 里面,如果在就直接删除即可;如果不在,就插入一条 Delete Marker 到这个由 B-Tree 索引实现的 Delete Buffer。无论是 INSERT 还是 DELETE 操作,都没有特别耗时的地方。可能往 B-Tree 索引实现的 Delete Buffer 里面写 Delete Marker 会有点儿耗时,但这个 Delete Buffer 一般都是最近更新比较热的数据。首先体量不会特别大,其次,大部分的都是热数据,都会被 Cache 到内存。然后,后台有一个任务, 会默默地把 Delete Buffer 里面的 Delete 操作都转换成 Delete Bitmap。...