
HBase Practice At XiaoMi
tianjy1990@gmail.com

openinx@apache.org

mailto:tianjy1990@gmail.com
mailto:openinx@apache.org

Part-1 Problems In Practice

Problems in XiaoMi

❏ Problem 1. How to satisfy the regular demand of scanning table without
affecting other requests?

Better support for data analysis
❏ Scan is expensive

❏ Data analysis need to scan a large number of data from hbase

❏ They are executed by mapreduce or spark, that put a heavy burden on HBase

Scan snapshot directly

❏ HBase already provides this feature: TableSnapshotInputFormat
(ClientSideRegionScanner)
❏ Construct regions by snapshot files
❏ Read data without any HBase RPC requests
❏ Required READ access to reference files and HFiles

Snapshot ACL

❏ HDFS ACL could grant accesses to certain users besides owner and group
❏ Can support upto 16 users: 32 ACLs / 2 (include user, group, mask, other)

HDFSAclManager

Grant read access
Traverse all files

grant 'bobsmith',
'RW', 'ns1:test'

Grant READ?

HdfsAclManager

Snapshot ‘ns1:test’ HdfsAclManager

Has ACL config? Grant read access
Snapshot Manifest

Problems in XiaoMi

❏ Problem 2. How to prevent data from being contaminated or lost when user
operate incorrectly?

Users may make mistakes

❏ User regret dropping table

❏ User delete data by mistake or write in wrong data

Soft deletion

❏ Take a snapshot before do real table deletion
❏ Clean these snapshots after a certain period (e.g. one week)

Disable table Drop table Data deleted

Disable table Drop table Data deletedCreate
snapshot

Restore snapshot if user regret

Before

After

Backup snapshot to heterogeneous FileSystem
❏ Design of backup logic

❏ Simply design to make sure it’s 100% work
❏ Copy entire snapshot to the backup filesystem
❏ Use reference files and data files to deduplicate

Data Files

Backup 06-18

Snapshot: s06_18 Backup 06-09

Backup 06-02

.

.

.

Backups of one table

Reference files

HBase Backup Manager

HBase Backup Manager

❏ Delete snapshot regularly

❏ Verify the backups on the heterogeneous fileSystem

Problems in XiaoMi

❏ Problem 3. Restart of a small cluster is stuck at log splitting

Why stuck at splitting

❏ HBASE-19358

❏ Problem: Log splitting has a bad performance or even not working when the
number of region is very large, e.g 1000+ per regionserver

Create
WriterAndPath

Create
WriterAndPath

Create
WriterAndPath

Create
WriterAndPath

appendBuffer appendBuffer appendBuffer appendBuffer

...

...

closeThreadPool
(close these log writers)

getChunkToWrite

Write the largest chunk

Close all writers at the end

Region 1 Region 2 Region 3 Region 4

Old design of log splitting

Log splitting problem - 1
❏ Too much space need to be reserved at the same time. HDFS may not able

to assign enough space to create a new block.

Reserved space = number of Log * number of region * configured size of HLog block * number of
replica

❏ Especially for a small hdfs cluster, whose remaining space is small.

Log splitting problem - 2
❏ Too many HDFS streams created at the same time. Then it is prone to failure

since each datanode need to handle too many streams.

Number of streams = number of Log * number of region * number of replica * number of
regionserver

Streams each datanode need to handle = Number of streams / number of datanodes

Number of regionserver usually equals to number of datanodes.

❏ Clusters all facing this problem no matter they are large or small.

WriterAndPath

writeThenClose

WriterAndPath

writeThenClose

getChunkToWrite Write the largest chunk whose
size exceeds maxHeapUsage

After reading all entries
into memory

WriterAndPath

writeAndClose

WriterAndPath

writeAndClose

writeAndCloseThreadPool

...

New design of log splitting

EntriesMap

Opening Log writers
<= limit of this pool

Performance

Time cost to split one 512MB HLog

Performance
❏ Restart a cluster of 18 datanodes and 18 regionServers

❏ Throughput = size of Hlog / cost time

Performance

❏ For one series, it almost has no change as the thread count increase
❏ More regions means more recovered log files will be generated.
❏ The time of log splitting depends mainly on number of generated recovered log files.

20000 regions

40000 regions

80000 regions

Recommend settings

❏ Enable this feature

Hbase.split.writer.creation.bounded = true

❏ Configurations:

hbase.regionserver.hlog.splitlog.buffersize (maxHeapUsage): set it equals or larger than the size limit of HLog.

hbase.regionserver.hlog.splitlog.writer.threads : Not having a equation to calculate. 32 is best according to our test

Part-2 Replication Improvement

Abstract
❏ New Replication Storage Layer
❏ Replication Task Flow
❏ Revisit Serial Replication

Abstract
❏ New Replication Storage Layer
❏ Replication Task Flow
❏ Revisit Serial Replication

Problems of original replication storage
➢ Fuzzy interface definitions

○ Some classes for client, but others for region server, can integrate together.
○ …

➢ No Consideration for the abstraction for table based replication storage.
○ Some methods throw KeeperException instead of ReplicationException
○ ….

New replication storage layer (HBASE-19397)

ReplicationPeerStorage ReplicationQueueStorage

TableReplicationPeerStorageZKReplicationPeerStorage ZKReplicationQueueStorage TableReplicationQueueStorage

AddPeer();
RemovePeer();
setPeerState();
updatePeerConfig();
...

addWAL();
remoteWAL();
setWALPosition();
getAllQueues();
...

HMaster RegionServer Replication Tools

Abstract
❏ New Replication Storage Layer
❏ Replication Task Flow
❏ Revisit Serial Replication

Replication task flow - version #0

HMaster

Region Server - 0

Client
1.Add Peer Request

ZK Cluster

Region Server - 1

3.Response

2.Write to ZK

Receive watch event and add a new replication source (Async)

Release-1.4.x

ReplicationAdmin

Problems - version #0
➢ Expose the replication implementation to HBase client

○ The clients are allowed to read/write the replication znode(Security Problem).
○ Hard to authentication the request.
○ No coprocessor for interfaces.

➢ Async zookeeper notification from client to region server.
○ client won’t know whether the task is success or not
○ Notification lost when RegionServer is not alive. (HBASE-12769)
○ Hard to implement the more complex task flow for Serial Replication & Sync Replication)

Replication task flow - version #1

HMaster

Region Server - 0

Client

1.Add Peer Request

ZK Cluster

Region Server - 1

3.Response

2.Write to ZK

Receive watch event and add a new replication source (Async)

After HBASE-11392

Problems - version #1
➢ Expose the replication implementation to client

○ The clients are allowed to read/write the replication znode
○ Hard to implement request authentication at hbase level
○ No coprocessor for interfaces in ReplicationAdmin.

➢ Async zookeeper notification from client to region server.
○ Client does not know whether the peer is added success or failure at server side.
○ Notification lost when RegionServer is not alive. (HBASE-12769)
○ Hard to implement the more complex task flow (for Serial Replication/Sync Replication)

Replication task flow - version #2

HMaster

Region Server - 0

Replication Storage(Table/ZK)

Client

1.Add Peer Request

Region Server - 1

4.Response

2.Write to Storage

3. Send procedure event & Wait until replication
source added at RegionServer side

Procedure Framework

After HBASE-19397

Problems - version #2
➢ Expose the replication implementation to client

○ The clients are allowed to read/write the replication znode
○ Hard to implement request authentication at hbase level
○ No coprocessor for interfaces in ReplicationAdmin.

➢ Async zookeeper notification from client to region server.
○ Client does not know whether the peer is added success or failure at server side.
○ Notification lost when RegionServer is not alive. (HBASE-12769)
○ Hard to implement the more complex task flow (for Serial Replication/Sync Replication)

Abstract
❏ New Replication Storage Layer
❏ Replication Task Flow
❏ Revisit Serial Replication

Problem of normal replication

RS0

Region-A

HLog-0

RS1

HLog-1

Peer Cluster

RS0

HLog-0

RS1

HLog-1

Peer Cluster

Region-ARegion-A moved from RS0 to RS1

For region A, Both RS0’s HLog & RS1’s HLog will be replicated to
peer cluster in parallel.

For region A, Only RS0’s HLog will be replicated to peer cluster.

Normal replication - problem #1

Put K0, V0, t1

Put K0, V0, t2

t1

t2

Put K0, V0, t5 t4

t3 Region Move

Put K0, V0, t1

Put K0, V0, t5

t6

t7

t8

Sequence of mutations in source cluster. A possible sequence of mutations in peer cluster

➢ Mutations are out-of-order in peer clusters. Disaster for pub/sub, message
system etc.

Put K0, V0, t2

Normal replication - problem #2

Put K0, V0, t1

Delete K0, t < t4

t1

t2 Put K0, V0, t2

t4

t3 Region Move

Put K0, V0, t1t6

t7

t9

Mutation sequence in source cluster. A possible mutation sequence in peer cluster

➢ The source cluster has no data, but the peer cluster has a cell (Put K0, V0, t2) in
the end.

➢ Data inconsistent happen between source cluster and peer clusters.

Delete K0, t < t4

Put K0, V0, t2

t8 Major Compact

Redundant cell

Core idea of serial replication

Barrier0 Barrier1 Barrier2 Barrier3

Barrier logged when region open

The initialized barrier when set peer to be serial

Re-open region Re-open region Re-open region

Core idea of serial replication

Barrier0 Barrier1 Barrier2 Barrier3

Barrier logged when region open

The initialized barrier when set peer to be serial

Re-open region Re-open region Re-open region

Range-0

Range-1
Range-2

Range-3
Range-5

Core idea of serial replication

Barrier0 Barrier1 Barrier2 Barrier3

The initialized barrier when set peer to be serial

Re-open region Re-open region Re-open region

Last pushed sequence ID

Barrier logged when region open

Pending seq id to check whether we
can push now.

Range-0

Range-1
Range-2

Range-3
Range-5

Core idea of serial replication
❏ For each region, we save two sequence id(s):

❏ Last Pushed Sequence ID: Update this id for the specific region after replicated a WAL
entry to peer cluster, it means the progress of the serial peer.

❏ Barrier: Will store the region’s openNum as its barrier for each region when RS open it.

❏ Last Pushed Sequence ID VS WAL Position:
❏ Last Pushed Sequence ID is a sequence id for a given region.
❏ WAL Position is the latest replicated offset for current W-A-L file.

Why to reimplement the serial replication #1
➢ We stored the Last Pushed Seq ID in hbase:meta

○ WAL Entry only has an encoded region name, but rowkey in hbase:meta is a full region
name, the two different rowkey format messed up the hbase:meta.

○ Inconsistent between WAL position(ZK) and region’s Last Pushed Seq ID(meta table)

➢ After HBASE-19397, we introduced the New Replication Storage Layer, Need
to integrate the serial replication with it.

Move the last pushed seq id to zookeeper

Barrier (Region)

Zookeeper hbase:meta table

Last Pushed Seq ID (Region)WAL-Position Barrier (Region)

Zookeeper hbase:meta table

Last Pushed Seq ID (Region)WAL-Position

Original Design New Design

RowKey: Encoded Region Name RowKey: Encoded Region Name RowKey: Full Region Name

Why to reimplement the serial replication #1
➢ We stored the Last Pushed Seq ID in hbase:meta

○ WAL Entry only has an encoded region name, but rowkey in hbase:meta is a full region
name, the two different rowkey format messed up the hbase:meta.

○ Inconsistent between WAL position(ZK) and region’s Last Pushed Seq ID(meta table)

➢ After HBASE-19397, we introduced the New Replication Storage Layer, Need
to integrate the serial replication with it.

Why need to update WAL-pos/seq-id in CAS

Barrier0 Barrier1 Barrier2 Barrier3

Last pushed sequence ID

Barrier logged when region open

Pending seq id to check whether we
can push now

RegionServer-0 is pushing log of this
range

RegionServer-1 is pushing log of this range

➢ Both RS-0 an RS-1 are updating their last pushed seq id
➢ The latest last pushed seq id written by one region server may be overwritten by

other RS
➢ The serial peer will be stuck if last pushed seq id is not strictly increasing

Solution to update WAL-pos/seq-id in CAS

➢ Read current znode version & last pushed seq id ;
➢ If the new last pushed seq id <= last pushed seq id ; then skip to update;
➢ Else persist the new last pushed seq id by setData with the current

znode version.
➢ If no version conflict, then the CAS is success.
➢ Else just retry the Step.1 again.

Why to reimplement the serial replication #1
➢ We stored the Last Pushed Seq ID in hbase:meta

○ WAL Entry only has an encoded region name, but rowkey in hbase:meta is a full region
name, the two different rowkey format messed up the hbase:meta.

○ Inconsistent between WAL position(ZK) and region’s Last Pushed Seq ID(meta table)

➢ After HBASE-19397, we introduced the New Replication Storage Layer, Need
to integrate the serial replication with it.

Why to reimplement the serial replication #2
➢ No consideration for the initialization of last pushed seq id, which may block

the serial replication. (HBASE-20147)
○ BTW, we moved the serial attribution from table to peer.

Initialize the last pushed seq id

HMaster

Region Server - 0

Replication Storage(Table/ZK)

Client

1.Add Peer Request

Region Server - 1

7.Response

2.Write to Storage

3. Add a serial replication source.
4. Reopen all regions in peer
6. Enable the peer

Procedure Framework

Procedure for adding a serial peer

5. Store the latest barrier as the
initialized last pushed seq id

If no reopen, the RIT region or
region without any put will has
an out-of-date last pushed
sequence id.

Serial replication checker #1

Barrier0 Barrier1 Barrier2 Barrier3

Last pushed sequence ID

Barrier logged when region open

Pending seq id to check whether we
can push now.

➢ We won’t guarantee the serialization, for whose seq id is less than the initial last
pushed sequence id.

➢ Now, the pending sequence id < the last pushed sequence id(Barrier1). So, just
replicate the current WAL entry.

Serial replication checker #2

Barrier0 Barrier1 Barrier2 Barrier3

Last pushed sequence ID

Barrier logged when region open

Pending seq id to check whether we
can push now

➢ The pending seq id is in the first range of barriers.
➢ It’s possible that the region is the split/merge result of other region(s). So wait until

its parent to be fully replicated (if parent exists), otherwise, just replicate the entry
to peer cluster.

Serial replication checker #3

Barrier0 Barrier1 Barrier2 Barrier3

Last pushed sequence ID

Barrier logged when region open

Pending seq id to check whether we
can push now

➢ The pending seq id is in the range of barriers, but the last pushed seq id haven’t
reached now.

➢ So wait until the last pushed seq id >= Barrier2 - 1

Barrier0 Barrier1

Last pushed sequence ID

Barrier logged when region open

Pending seq id to check whether we
can push now

Write Open-Region-Marker to WAL

Region marked as OPEN

The Pending Barrier 2

RegionServer-1 take charge of the Range

RegionServer-0 take charge
of the Range

Serial replication checker #4

The pending barrier to log

The seq id of open region marker

➢ The pending sequence id to check is located in the last interval [barrier1, +oo), if the region is
OPENING and last pushed sequence id has reached the latest barrier1, we still need to wait until the
region to be OPEN state.

➢ Step.1 Master mark the region to be OPENING state firstly, then request the RS1 to open region.
➢ Step.2 RS1 open the region and write an open-region-marker to WAL.
➢ Step.3 Master mark the region to be OPEN state, and then write the pending barrier2.
➢ So if replicate the open-region-marker while region is opening, the RS1 will replicate its entries even

if entries in previous interval haven’t been fully replicated, which break the serial replication.

Serial replication checker #4

Thank You !

