

Further GC optimization for HBase 2.x:
Reading HFileBlock into offheap directly

Anoop Sam John / Zheng Hu

Abstract
❏ Background: Why offheap HDFS block reading
❏ Idea & Implementation
❏ Performance Evaluation
❏ Best Practice

Abstract
❏ Background: Why offheap HDFS block reading
❏ Idea & Implementation
❏ Performance Evaluation
❏ Best Practice

Background: current offheap read/write path

P999 is about 100ms

Young GC is also about 100ms, means P999 is affected by Young GC now.

Few Mixed GCMany Young GC

Background: still GC issue in some case ?
➢ High young GC pressure if cachHitRatio is not 100%

○ Reading the Block from HFile is still copied to the heap firstly
○ The heap block won’t be garbage collected unless:

■ Read is complete and the results been created (CellBlock) in the RPC responder area.
■ the WriterThread of BucketCache flushes the Block to offheap IOEngine successfully

○ A large number of young generation objects, which leads to the raising young GC pressure.

Abstract
❏ Background: Why offheap HDFS block reading
❏ Idea & Implementation
❏ Performance Evaluation
❏ Best Practice

Basic Idea: Just read the block from HFile to pooled ByteBuffers

BucketCache

Review: how did we cache a block in BucketCache ?

RpcHandler

Block

RAMCache

Block

Bucket Bucket

Cache layer

RPC layer

HFile
HDFS layer

HFile

Block

heap

offheap

BucketCache

Review: how did we cache a block in BucketCache ?

RpcHandler

Block

RAMCache

Block

Bucket Bucket

Cache layer

RPC layer

HFile
HDFS layer

HFile

Block

<1>

<2>

<1> Read block from HFile to pooled ByteBuffers;

 <2> Cache the block in a temporary map named RAMCache for
avoiding the unstable latency if flushing to offheap bucket cache
synchronously.

<3>

 <3> Encoded the cells from block and shipped to RPC client.

The WriterThreads of BucketCache flush the block to offheap array
asynchronously once #2 finished.

heap

offheap

BucketCache

Problem: Block may be accessed by other RPC Handlers ?

RpcHandler

Block

RAMCache

Bucket Bucket

Cache layer

RPC layer

HFile
HDFS layer

HFile

Block

<1>

<2>

<3>
RpcHandler

<2.5>

Block
offheap

offheap

Once #2 load the block into RAMCache, then other RpcHandler
 may hit the block and reference to it.

BucketCache

Problem: Block may be accessed by other RPC Handlers ?

RpcHandler

Block

RAMCache

Bucket Bucket

Cache layer

RPC layer

HFile
HDFS layer

HFile

Block

<1>

<2>

<3>
RpcHandler

<2.5>

Block

offheap

Once #2 load the block into RAMCache, then other RpcHandler
 may hit the block and reference to it.

Then how should we release the offheap block back to the
pool without causing any memory leak issues?

offheap

BucketCache

Problem: Block may be accessed by other RPC Handlers ?

RpcHandler

Block

RAMCache

Bucket Bucket

Cache layer

RPC layer

HFile
HDFS layer

HFile

Block

<1>

<2>

<3>
RpcHandler

<2.5>

Block

offheap

Once #2 load the block into RAMCache, then other RpcHandler
 may hit the block and reference to it.

Reference count:
1. Consider the RAMCache as a separate reference path;
2. RPC handlers are another separate reference paths.

Then how should we release the offheap block back to the
pool without causing any memory leak issues?

offheap

Core Idea
1. Maintain a refCount in block’s ByteBuff, once allocated, its refCount will be initialized to 1;
2. If put it into RAMCache, then refCount ++;
3. If removed from RAMCache, then refCount --;
4. If some RPC hit the ByteBuff in RAMCache, then refCount ++;
5. Once RPC finished, then ByteBuff’s refCount --;
6. If its refCount decrease to zero, we MUST deallocate the ByteBuff which means putting its NIO

ByteBuffers back to ByteBuffAllocator. Besides, nobody can access the ByteBuff with refCount = 0.

Implementation
➢ General ByteBuffer Allocator
➢ Reference Count
➢ DownStream API Support
➢ Other issues:

○ Unify the refCnt of BucketEntry and HFileBlock into one
○ Combined the BucketEntry sub-classes into one

General Allocator

General Allocator

MultiByteBuff

SingleByteBuff

Performance issues between SingleByteBuff and MultiByteBuff

Reference Count
➢ Use Netty’s AbstractReferenceCounted

○ Use unsafe/safe method to maintain the reference count value.
○ Once the reference count value decreasing to zero, will trigger the registered Recycler to deallocate.
○ The duplicate or slice ByteBuff will share the same RefCnt with the original one.

■ if want to retain the buffer even if original one did a release, can do as the following:

Retain the duplicated one before release the original one

Downstream API Support
➢ ByteBuffer positional read interface (HBASE-21946)

○ Need support from Apache Hadoop (Hadoop >=2.9.3)

➢ Checksum validation methods (HBASE-21917)
○ SingleByteBuff will use the hadoop native lib
○ MultiByteBuff will copy to heap and validate the checksum.

➢ Block decompression methods (HBASE-21937)
○ Copy to an temporary small heap buffer and decompression

Unify the refCnt of BucketEntry and HFileBlock into one

Unify the refCnt of BucketEntry and HFileBlock into one

RefCnt for HFileBlock

RefCnt for BucketEntry

Just pass the BucketEntry’s refCnt to HFileBlock. Then
BucketEntry and HFileBlock will share an single RefCnt.

Combined the BucketEntry sub-classes into one
➢ BucketEntry

○ Exclusive heap block
○ No reference count.

➢ SharedMemoryBucketEntry
○ Shared offheap block
○ Use a AtomicInteger to maintain the reference count.

➢ UnsafeSharedMemoryBucketEntry
○ Shared offheap block
○ Use integer and unsafe CAS to maintain the reference count.

BucketEntry
With netty’s RefCnt inside, which will use
safe/unsafe way to update the refCnt.

Before HBASE-21879 After HBASE-21879

Abstract
❏ Background: Why offheap HDFS block reading
❏ Idea & Implementation
❏ Performance Evaluation
❏ Best Practice

Test Cases
Three test cases to prove the performance improvement after HBASE-21879

➢ Disabled BlockCache cache: CacheHitRatio ~ 0%
➢ CacheHitRatio~65%
➢ CacheHitRatio~100%

Environment & Workload

Load 10 billion rows , each row with size=100 byte.
(about total 700GB in the clusters)
Major compaction to ensure the locality is 1.0

Case#1: Disabled BlockCache, CacheHitRatio~0%

Case#1: Disabled BlockCache, CacheHitRatio~0%

Decreased almost 81.7% young usage.

Throughtput increased 17.2%, latency decreased
about 14.7%

Heap occupation after GC decreased a bit.

Case#1: Before HBASE-21879

Case#1: After HBASE-21879

Decreased almost 95.5% heap allocation.

Case#2: CacheHitRatio ~ 65%

Case#2: CacheHitRatio ~ 65%

Young GC count decreased about 20%

Object copying when GC decreased about 4%

Latency increased a bit because of the offheap
bytes reading & cell decoding.

Case#3: CacheHitRatio ~100%

Case#3: CacheHitRatio ~100%

No difference in young generation usage.

Throughput increased about 2.1%

Won’t affect the latency & throughput of normal
read path.

Abstract
❏ Background: Why offheap HDFS block reading
❏ Idea & Implementation
❏ Performance Evaluation
❏ Best Practice

The introduced config keys in 3.0.0 & 2.3.0
➢ hbase.server.allocator.pool.enabled

○ Whether the region server will use the pooled offheap ByteBuffer allocator;
○ Default: true
○ The hbase.ipc.server.reservoir.enabled is deprecated one since 2.3.0.

➢ hbase.server.allocator.minimal.allocate.size
○ Allocated as a pooled offheap ByteBuff if desired size >= this value, otherwise just use heap ByteBuff.
○ Default: hbase.server.allocator.buffer.size / 6

➢ hbase.server.allocator.max.buffer.count
○ How many buffers are there in the pool
○ Default: 1890 (2MB * 2 * hbase.regionserver.handler.count / 65KB)
○ The hbase.ipc.server.reservoir.initial.max is deprecated since 2.3.0

➢ hbase.server.allocator.buffer.size
○ The byte size of each ByteBuffer
○ Default: 65KB (why not 64 KB ?)

Practice#1
➢ Please make sure that there are enough pooled DirectByteBuffer in your

ByteBuffAllocator.

Practice#1
➢ Please make sure that there are enough pooled DirectByteBuffer in your

ByteBuffAllocator.

Need to enlarge max.buffer.count or decrease minimal.allocation.size if meet the following condition.

Practice#2
➢ Please make sure the buffer size of allocator is greater than your block size.

○ Assume block size=64KB, your block will be 64KB + delta.
■ delta come from: checksum / header / other meta data.

○ If buffer size is also 64KB, then the block will be composited by two 64KB ByteBuffers.
○ SingleByteBuff have simple data structure and access faster than MultiByteBuff.

64KB 128B

64KBBLOCK_SIZE=64KB

64KB

Real block size

64KBByteBuff in Allocator

hbase.server.allocator.buffer.size=64KB

64KB 128B

64KBBLOCK_SIZE=64KB

65KB

Real block size

ByteBuff in Allocator

hbase.server.allocator.buffer.size=65KB

Two ByteBuffers One ByteBuffer

Heap Memory AreaOffheap Memory Area

Practice#2
➢ Please make sure the buffer size of allocator is greater than your block size.

○ SingleByteBuff’s checksum can speed by using hadoop native lib, while MultiByteBuff can not.

16KB cksum 16KB cksum 16KB cksum 16KB cksum

cksum cksum cksum cksum

Calculate by
hadoop native lib

Compare

Calculate checksum for Block backended by SingleByteBuff

Offheap Memory Area

16KB cksum 16KB cksum 16KB cksum 16KB cksum

cksum cksum cksum cksum

Compare

Calculate checksum for Block backended by MultiByteBuff

Copy to heap then
calculate checksum

16KB

Practice#3
➢ If disabled block cache, need to consider the index/bloom block size.

○ The default hfile.index.block.max.size is 128KB.
○ buffer size set to 130KB will be better if disabled block cache (based on practice#2)

Practice#4
➢ Prevent to OOM or full GC for huge cell reading

○ Huge cell won’t cache in BucketCache, because BucketCache only cache <513KB block by default.
○ All reads will direct to HDFS, reading them into pooled BB will protect the RS from OOM or full GC.

Thanks！

