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1O API history in Linux

=> read(2) / write(2)

=> pread(2) / pwrite(2) offset

=> preadv(2) / pwritev(2) vector-based

=> preadv2(2) / pwritev2(2) modifier flags

=> aio_read(3) / aio_write(3) limited async |0 interfaces
=> io-uring since Linux Kernel 5.1



libaio vs liburing

e libaio
o limitation: only supports async IO for O_DIRECT (or un-buffered) accesses
o Some internal implementations is still blocking ?
m  meta-data perform blocking 10
m  Dblock waiting for the available request slots in storage device if no available now.
o Overhead: need extra bytes copy
m |0 submission need 64+8 bytes
m |0 completion need 32 bytes.
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e liburing

o Better performance & scalability



Case#1: What we TiKV can benefit from io_uring ?

e Facebook rewrite the MultiRead by using io_uring
o https://qgithub.com/facebook/rocksdb/pull/5881/files
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RocksDB: Multi-Reads optimized by io_uring (1)

RocksDB MultiRead()
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RocksDB: Multi-Reads optimized by io_uring (2)
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For TiKV ?
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Let's benchmark the TiKV

e Prepare
o Set the Rocksdb config (Multi-Reads only supported in one SST now):
m Disable the block cache.
m write-buffer-size=500MB
m target-file-size-base=500MB
o Load a small (50MB) data set
m Flush the memstore to make it to be a SST.

e Benchmark running

o Run the SQL few minutes.
m Such as: select * from table where (a, b, ¢) in ((1,2,3),(2,4,5));

} Ensure that only one SST in the RocksDB
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Benchmark Results
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Case#2: RocksDB can benefit more from io_uring ?

e Rewrite the write+sync WAL in RocksDB by using io_uring
o https://github.com/PingCAP-Hackthon2019-Team17/rocksdb/pull/1
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RocksDB Performance Improvement

sync write:
uring: fillrandom :  96.676 micros/op 10343 ops/sec; 1.1 MB/s
master: fillrandom : 99.899 micros/op 10010 ops/sec; 1.1 MB/s

- =3
*&
= no-sync write:

uring: fillrandom : 2.143 micros/op 466612 ops/sec; 51.6 MB/s
master: fillrandom : 2.209 micros/op 452624 ops/sec; 50.1 MB/s
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RocksDB Performance Improvement

\\4! = Write key-value with a fsync in RocksDB
sync write:
uring: fillrandom :  96.676 micros/op 10343 ops/sec; 1.1 MB/s ops/sec: +3.3%
master: fillrandom :  99.899 micros/op 10010 ops/sec; 1.1 MB/s

. z S Write key-value without a fsync in RocksDB

o ‘
no-sync write:
uring: fillrandom :  2.143 micros/op 466612 ops/sec; 51.6 MB/s ops/sec: +3.1%
master: fillrandom : 2.209 micros/op 452624 ops/sec; 50.1 MB/s
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Case#3: Rewrite the compaction
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Case#3: Rewrite the compaction by io_uring

master uring
compaction time ; 5163ms 49472ms
compaction cpu time: 3567ms 3484ms

file write time : 604ms 309ms
range sync time : 94ms 1ms
fsync time ; 195ms 188ms

File write time decreased ~50%



Conclusion & Future work

e One RPC to TiKV which would produce multiple O requests to Filesystem

o Example#1: One Get with multiple disk seek & read ?
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Conclusion & Future work

e One RPC to TiKV which would produce multiple 10 requests to FS

o Example#2: batch the compaction 10 request by using io_uring ?
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Conclusion & Future work

e One RPC to TiKV which would produce multiple 10 requests to FS

o More example ....
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