|O-uring speed the RocksDB & TIKV
Why did the always [Rocetsse

Git Repo: https://github.com/PingCAP-Hackthon2019-Team17

https://github.com/PingCAP-Hackthon2019-Team17

Overview

4 Background
d libaio VS liburing
d What have we done

A Case#1: What can our TiKV benefit from io_uring ?

A Case#2: RocksDB can benefit from io_uring

A Case#3: Rewrite the RocksDB compaction by using io_uring
d Future work

1O API history in Linux

=> read(2) / write(2)

=> pread(2) / pwrite(2) offset

=> preadv(2) / pwritev(2) vector-based

=> preadv2(2) / pwritev2(2) modifier flags

=> aio_read(3) / aio_write(3) limited async |0 interfaces
=> io-uring since Linux Kernel 5.1

libaio vs liburing

e libaio
o limitation: only supports async IO for O_DIRECT (or un-buffered) accesses
o Some internal implementations is still blocking ?
m meta-data perform blocking 10
m Dblock waiting for the available request slots in storage device if no available now.
o Overhead: need extra bytes copy
m |0 submission need 64+8 bytes
m |0 completion need 32 bytes.

libaio vs liburing

e libaio
o limitation: only supports async IO for O_DIRECT (or un-buffered) accesses
o Some internal implementations is still blocking ?
m meta-data perform blocking 10
m Dblock waiting for the available request slots in storage device if no available now.
o Overhead: need extra bytes copy
m |0 submission need 64+8 bytes
m |0 completion need 32 bytes.

e liburing

o Better performance & scalability

Case#1: What we TiKV can benefit from io_uring ?

e Facebook rewrite the MultiRead by using io_uring
o https://qgithub.com/facebook/rocksdb/pull/5881/files

[[so | (oo | [ou]] S

RocksDB

Kernel

Filesystem

Before io_uring

https://github.com/facebook/rocksdb/pull/5881/files

Case#1: What we TiKV can benefit from io_uring ?

e Facebook rewrite the MultiRead by using io_uring
o https://qgithub.com/facebook/rocksdb/pull/5881/files

[[oot] (oot) oo]] S [[oot I oo I oot]] i Rons
A A A
RocksDB (‘{ RocksDB
________ P I A I ERt 1 A e e
Kernel Kernel

[10 submit queue]))

Filesystem

[10 Completion queue]

Before io_uring After io_uring

https://github.com/facebook/rocksdb/pull/5881/files

RocksDB: Multi-Reads optimized by io_uring (1)

RocksDB MultiRead()

1600

1400 -
1200
1000

800 W master

M jo_unng

600 -

400

) _ L

. [
1 2 4 8 16 32
Number of keys

From facebook team

Time (usec)

RocksDB: Multi-Reads optimized by io_uring (2)

10PS

1,800,000

1,600,000

1,400,000

1,200,000

1,000,000

800,000

600,000

400, 000

200,000

4k random read 10OPS

alo
lo_uring
io_uring poll

16

Queue depth

32

128

From facebook team

For TiKV ?

196-yojeqg-abeso]s

key |

key |

— 2J9b-uxy — —

— 1J9b-ux]

— 1J9b-ux)

master

select * from table where (a, b, ¢) in ((1,2,3),(2,4,5));

__getlock
_seek write
_get default,

__getlock o
_seek write
_get default,
__getlock
_seek write

get default

gps>>0d

196-yojeqg-abeso]s

=) __batch-get
o 1 locks
=
M
_seek write,
g wn .
S8 seekwile
A= _
—seek writey
I
s 5 -batch-get
é @ defaults

gps>>0d

Let's benchmark the TiKV

e Prepare
o Set the Rocksdb config (Multi-Reads only supported in one SST now):
m Disable the block cache.
m write-buffer-size=500MB
m target-file-size-base=500MB
o Load a small (50MB) data set
m Flush the memstore to make it to be a SST.

e Benchmark running

o Run the SQL few minutes.
m Such as: select * from table where (a, b, ¢) in ((1,2,3),(2,4,5));

} Ensure that only one SST in the RocksDB

25.0000

Benchmark Results

Performance improved but not big difference ?

20.0000

15.0000

10.0000

5.0000

0.0000

B master = multi-get

Benchmark Results

25.0000

Performance improved but not big difference ?
20.0000 Because of the small data set, almost all in
page cache. NO |O request redirect to the
15.0000 storage device.

10.0000

5.0000 |
0.0000 Il |I I
P

master = multi-get

Case#2: RocksDB can benefit more from io_uring ?

e Rewrite the write+sync WAL in RocksDB by using io_uring
o https://github.com/PingCAP-Hackthon2019-Team17/rocksdb/pull/1

[| Append | [sync |]WriteAPI [| Append | [sync |] Write API
4 4 AA
RocksDB RocksDB
1 <2 <1> <2>
Kernel Kernel
A
[10 submit queue]
Filesystem

[10 Completion queue]

Before io_uring After io_uring

https://github.com/PingCAP-Hackthon2019-Team17/rocksdb/pull/1

RocksDB Performance Improvement

sync write:
uring: fillrandom : 96.676 micros/op 10343 ops/sec; 1.1 MB/s
master: fillrandom : 99.899 micros/op 10010 ops/sec; 1.1 MB/s

- =3
*&
= no-sync write:

uring: fillrandom : 2.143 micros/op 466612 ops/sec; 51.6 MB/s
master: fillrandom : 2.209 micros/op 452624 ops/sec; 50.1 MB/s

I BEEBIF— o

RocksDB Performance Improvement

\\4! = Write key-value with a fsync in RocksDB
sync write:
uring: fillrandom : 96.676 micros/op 10343 ops/sec; 1.1 MB/s ops/sec: +3.3%
master: fillrandom : 99.899 micros/op 10010 ops/sec; 1.1 MB/s

. z S Write key-value without a fsync in RocksDB

o ‘
no-sync write:
uring: fillrandom : 2.143 micros/op 466612 ops/sec; 51.6 MB/s ops/sec: +3.1%
master: fillrandom : 2.209 micros/op 452624 ops/sec; 50.1 MB/s

SAEEEA—A.
A,

Case#3: Rewrite the compaction

[[Read || _Reac J][[Appena | Appena |

A

Sync] Compaction

RocksDB

Kernel

Filesystem

Before io_uring

[[Read || Read]][[Aopond | [Append]@]mpacﬁon

A
RocksDB
.._._._._<.1_>. _________ < 2_>_ _______ < ?:>_ _._._._<.4_>.. -]- __Kér;]e_l_
v \ v
[10 submit queue]
[10 Completion queue]

After io_uring

Case#3: Rewrite the compaction by io_uring

master uring
compaction time ; 5163ms 49472ms
compaction cpu time: 3567ms 3484ms

file write time : 604ms 309ms
range sync time : 94ms 1ms
fsync time ; 195ms 188ms

File write time decreased ~50%

Conclusion & Future work

e One RPC to TiKV which would produce multiple O requests to Filesystem

o Example#1: One Get with multiple disk seek & read ?

Memstore
>
>
1

Get

TiKV | RocksDB

Conclusion & Future work

e One RPC to TiKV which would produce multiple 10 requests to FS

o Example#2: batch the compaction 10 request by using io_uring ?

memory

Batch the compaction 10
request by using io_uring ?

(st) (oot) (oot | [s

TiKV | RocksDB

Conclusion & Future work

e One RPC to TiKV which would produce multiple 10 requests to FS

o More example

Reference

https://qithub.com/PingCAP-Hackthon2019-Team17
https://github.com/facebook/rocksdb/pull/5881/files
https://www.slideshare.net/ennael/kernel-recipes-2019-faster-io-through-iouring
http://qit.kernel.dk/cqit/liburing/tree/

hwnN =

https://github.com/PingCAP-Hackthon2019-Team17
https://github.com/facebook/rocksdb/pull/5881/files
https://www.slideshare.net/ennael/kernel-recipes-2019-faster-io-through-iouring
http://git.kernel.dk/cgit/liburing/tree/

