
IO-uring speed the RocksDB & TiKV
Why did the code always

Git Repo: https://github.com/PingCAP-Hackthon2019-Team17

https://github.com/PingCAP-Hackthon2019-Team17

Overview
❏ Background

❏ libaio VS liburing

❏ What have we done
❏ Case#1: What can our TiKV benefit from io_uring ?
❏ Case#2: RocksDB can benefit more from io_uring
❏ Case#3: Rewrite the RocksDB compaction by using io_uring

❏ Future work

IO API history in Linux
➔ read(2) / write(2)
➔ pread(2) / pwrite(2) offset
➔ preadv(2) / pwritev(2) vector-based
➔ preadv2(2) / pwritev2(2) modifier flags
➔ aio_read(3) / aio_write(3) limited async IO interfaces
➔ io-uring since Linux Kernel 5.1

libaio vs liburing
● libaio

○ limitation: only supports async IO for O_DIRECT (or un-buffered) accesses
○ Some internal implementations is still blocking ?

■ meta-data perform blocking IO
■ block waiting for the available request slots in storage device if no available now.

○ Overhead: need extra bytes copy
■ IO submission need 64+8 bytes
■ IO completion need 32 bytes.

libaio vs liburing
● libaio

○ limitation: only supports async IO for O_DIRECT (or un-buffered) accesses
○ Some internal implementations is still blocking ?

■ meta-data perform blocking IO
■ block waiting for the available request slots in storage device if no available now.

○ Overhead: need extra bytes copy
■ IO submission need 64+8 bytes
■ IO completion need 32 bytes.

● liburing
○ Fixed all above problem
○ Better performance & scalability

Case#1: What we TiKV can benefit from io_uring ?
● Facebook rewrite the MultiRead by using io_uring

○ https://github.com/facebook/rocksdb/pull/5881/files

Get Get Get

RocksDB

Kernel

Filesystem

<1> <2> <3>

Multi-Read

Before io_uring

https://github.com/facebook/rocksdb/pull/5881/files

Case#1: What we TiKV can benefit from io_uring ?
● Facebook rewrite the MultiRead by using io_uring

○ https://github.com/facebook/rocksdb/pull/5881/files

Get Get Get

RocksDB

Kernel

Filesystem

<1> <2> <3>

Multi-Read

Before io_uring

Get Get Get

RocksDB

Kernel
<1> <2> <3>

Multi-Read

IO submit queue

IO Completion queue

After io_uring

https://github.com/facebook/rocksdb/pull/5881/files

RocksDB: Multi-Reads optimized by io_uring (1)

From facebook team

RocksDB: Multi-Reads optimized by io_uring (2)

From facebook team

sto
rag

e-b
atch-g

et

txn-g
et

txn-g
et

txn-g
et

key

R
o

cksd
b

get lock

seek write

get default

get lock

seek write

get default

get lock

seek write

get default

key

key
sto

rag
e-b

atch-g
et

p
reche

ck

keys

R
o

cksd
b

batch-get
locks

seek write

batch-get
defaults

keys

keys

seek
w

rites
lo

ad

values
seek write

seek write

For TiKV ?

master multi-get

select * from table where (a, b, c) in ((1,2,3),(2,4,5));

Let’s benchmark the TiKV
● Prepare

○ Set the Rocksdb config (Multi-Reads only supported in one SST now):
■ Disable the block cache.
■ write-buffer-size=500MB
■ target-file-size-base=500MB

○ Load a small (50MB) data set
■ Flush the memstore to make it to be a SST.

● Benchmark running
○ Run the SQL few minutes.

■ Such as: select * from table where (a, b, c) in ((1,2,3),(2,4,5));

Ensure that only one SST in the RocksDB

Benchmark Results
Performance improved but not big difference ?

Benchmark Results
Performance improved but not big difference ?

Because of the small data set, almost all in
page cache. NO IO request redirect to the
storage device.

Case#2: RocksDB can benefit more from io_uring ?
● Rewrite the write+sync WAL in RocksDB by using io_uring

○ https://github.com/PingCAP-Hackthon2019-Team17/rocksdb/pull/1

Append Sync

RocksDB

Kernel

Filesystem

<1> <2>

Write API

Before io_uring

Append Sync

RocksDB

Kernel<1> <2>

Write API

After io_uring

IO submit queue

IO Completion queue

https://github.com/PingCAP-Hackthon2019-Team17/rocksdb/pull/1

RocksDB Performance Improvement

RocksDB Performance Improvement

ops/sec: +3.3%

ops/sec: +3.1%

Write key-value with a fsync in RocksDB

Write key-value without a fsync in RocksDB

Case#3: Rewrite the compaction

Append Append

RocksDB

Kernel

Filesystem

<1> <2>

Compaction

Before io_uring

SyncRead Read

<3> <4>

Append Append

RocksDB

Kernel<1> <2>

Compaction

After io_uring

SyncRead Read

<3> <4>

IO submit queue

IO Completion queue

Case#3: Rewrite the compaction by io_uring

File write time decreased ~50%

Conclusion & Future work
● One RPC to TiKV which would produce multiple IO requests to Filesystem

○ Example#1: One Get with multiple disk seek & read ?

Memstore
memory

SST

SST SST

SST SST SST SST

diskGet

TiKV RocksDB

<1>

<2>

<3>

<4> Optimize the multiple-seeks by using io_uring ?

Conclusion & Future work
● One RPC to TiKV which would produce multiple IO requests to FS

○ Example#2: batch the compaction IO request by using io_uring ?

Memstore
memory

SST

SST SST

SST SST SST SST

disk

TiKV RocksDB

SST

Compaction

Batch the compaction IO
request by using io_uring ?

Conclusion & Future work
● One RPC to TiKV which would produce multiple IO requests to FS

○ More example ….

Reference
1. https://github.com/PingCAP-Hackthon2019-Team17
2. https://github.com/facebook/rocksdb/pull/5881/files
3. https://www.slideshare.net/ennael/kernel-recipes-2019-faster-io-through-iouring
4. http://git.kernel.dk/cgit/liburing/tree/

https://github.com/PingCAP-Hackthon2019-Team17
https://github.com/facebook/rocksdb/pull/5881/files
https://www.slideshare.net/ennael/kernel-recipes-2019-faster-io-through-iouring
http://git.kernel.dk/cgit/liburing/tree/

